Measures to Control the Prevalence of Pneumoconiosis in Coal Mining: A Review of the Literature

Esther Ayaaba, MSc; Yi Liu, PhD; Yan Li, MSc; Lei Han, PhD; Quansah Dan Yedu, MPH; Ni Chunhui, PhD

1Department of Occupational Medicine and Environmental Health and Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China, 2Graduate School of Public Health, Seoul National University, Seoul, South Korea

Corresponding author email: chninjmu@126.com

ABSTRACT

Background: There are enormous health problems associated with the use of coal as energy. Dust emitted during the mining processes is identified as a specific risk factor for Coal Worker Pneumoconiosis (CWP) and other respiratory health problems. There is little published evidence on various health measures and their effectiveness in controlling CWP. This review seeks to provide a summary of the various health measures taken to reduce CWP in coalmines.

Methods: We searched Google scholar, PubMed, MEDLINE, EMBASE and occupational health databases for published research articles, evaluation reports, official documents and regulations. Reference lists of relevant papers were hand searched. We retrieved a total of 1049 articles out of which 17 merited criteria for inclusion. Papers presenting evidence of prevention of CWP among coal miners were included.

Results: Many technological interventions are currently available to promote primary prevention of CWP by ensuring reduction in inhalable dust. This review identified laws and regulations, surveillance, direct dust control measures, risk assessment and compensations as ways of minimizing exposure to dust among coal workers, as means of preventing CWP.

Conclusions and Implication for Translation: There is little evidence on the various measures stipulated in mining regulations that are adhered to and the extent to which they have been effective. Public strategy that combines various health measures including training of workers on safety measures will be much effective in preventing CWP.

Key words: Pneumoconiosis • Coalminer • Mining • Health Measure • Coal Worker • Control

Copyright © 2017 Ayaaba et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Control of CWP in Coal Mines

1. Introduction

Coal mining is the extraction of coal from the earth for use as fuel. Coal may be found either as surface outcrops or in underground seams.[1] Burning coal is viewed as the single largest cause of global warming, which the world’s leading medical journal, The Lancet, has described as “the biggest health threat of the 21st century”. Health problems associated with using coal as an energy source in Australia alone have been estimated to cost $2.6 billion per year.[1] Dust emitted during the mining processes is identified as a specific risk factor for respiratory health among miners.[2] According to the U.S. National Institute for Occupational Safety and Health (NIOSH) there is a considerable burden of pneumoconiosis in many countries, but stresses that, underground coal miners were vulnerable to other lung diseases, notably chronic obstructive pulmonary disease (COPD), and asthma.[3]

Pneumoconiosis is a progressive disease whose severity depends primarily on the cumulative mass of coal mine dust inhaled and, to a lesser extent, on other factors such as dust composition, duration of exposure and age.[4] Pneumoconiosis is strongly related to excessive coal dust exposure exceeding the Maximum Permissible Exposure Limits (MPELs).[5] It occurs as a reaction of the lung tissue parenchyma to the foreign coal dust particles, which accumulate in lung parenchyma cells.[6]

Exposure to dust at the work place is the major cause of other ailments. Occupational asthma, for example is the limited airflow related to workplace dust exposures.[7] In the developed world, occupational asthma is the most common occupational lung disease. This is evidenced by the results of physician notification schemes for occupational respiratory disease, established in several western countries, including the UK, Finland, Canada, the USA, South Africa and Australia. While reliable figures are difficult to find,[8] it has been estimated that up to 15% of new asthma in adults are directly attributable to occupational exposures.

According to the World Health Organization (WHO), Chronic Obstructive Pulmonary Disease (COPD) is “a disease state characterized by progressive development of airflow limitation that is not fully reversible. The airflow limitation is usually both progressive and associated with an abnormal inflammatory response by the lungs to, noxious particles or gases”. COPD prevalence is difficult to determine since the condition does not manifest until midlife. There is an estimated 90000 diagnosed cases in England and Wales, and an estimated 2 million people are thought to have the disease but remain undiagnosed[10]. Occupational agents reported to cause COPD with varying degrees of supporting evidence include coal mine dust,[11] silica, asbestos, agricultural dusts, dusts from rubber, iron/steel and smelting, welding fumes, isocyanates and other chemicals.[12]

In China, the State Administration of Work Safety[13] estimated an unprecedented 4648 cases of casualties caused by 105 coal dust explosions from 1970 to 2014.[14] Many of these explosions resulted in Coal Worker’s Pneumoconiosis (CWP) which is estimated as the most common disease caused by coal dust.[15,16] Again, the China National Health and Family Planning Commission[17] revealed that more than 105 thousand coal miners developed CWP from 2009 to 2013, accounting for 94.5% of the total increase of pneumoconiosis victims. The most intriguing part of the situation is, longwall mining is increasingly been adopted, due to its high productivity neglecting the risk it poses to the miners. What is more alarming is the absence of inhalable dust concentration limit in Chinese mining regulations compared to their Australian counterparts. The Australian regulation limits the concentration of inhalable dust to 10 mg/m³.[18]

In general terms, the body of evidence is stronger for coalmine dust, silica, grain and textiles and less strong for the other identified exposures.[19] Workers in numerous occupations (other than exposure-type) are at increased risk of COPD, supported by varying levels of evidence.[20] A study conducted by Goldyn, and colleagues,[21] revealed micro-nodular opacities along with restrictive pattern of pulmonary function in simple pneumoconiosis among coal miners whereas in Pakistan, an increased prevalence of pneumoconiosis
was found among coal miners of Cherat district Nowshera.[22] The study revealed that 71% had signs and symptoms of Occupational Respiratory health problems and 49.50% of the Coal Miners showed prevalence of Pneumoconiosis.[22] The overall situation of Occupational Safety & Health Measures in Cherat coal mines was not encouraging leaving miners under hazardous conditions.[22] In Baluchistan, a study to determine health impacts of coal mining showed that higher concentration of coal dust (Carbon and Quartz) resulted in asthma, drowsiness, shortness of breath and pneumoconiosis, and other respiratory illnesses.[23]

In spite of these revelations, there is little published evidence to assist employers and/or workers in coal mines when considering either how best to reduce the risk of COPD, asthma and pneumoconiosis related to work, or how best to identify and retain those with COPD, asthma and pneumoconiosis in work environment. Miners must be made aware of the potential health risks associated with breathing excess respirable dust as well as the controlling hazards to eliminate illnesses and injuries, including those that arise from changing mining conditions. The aim of this study is to review the existing literature on measures to control pneumoconiosis in coal mining.

2. Methodology
The target population consisted of mine workers from both high and low income countries. The healthcare measures included all forms of measures undertaken to prevent the pneumoconiosis, especially CWP and asbestosis. The targeted sources of evidence included reports, journal articles, conference proceedings, legal documents etc. The search was conducted in PubMed, Medline, Embase, Google scholar and database of occupational health and injuries. Information was synthesized from any of the aforementioned sources provided it met the inclusion criteria. Out of the 1049 articles extracted, 17 were included for review after meeting the inclusion criteria (Figure 1). This study did not focus on quantifying the interventions but presenting the evidence of prevention of CWP among coal miners globally.

3. Results
3.1. Health measures
Dust exposure and resulting ailments has been a major health concern since the inception of coal mining. The pneumoconiosis is primarily caused by the exposure to dust during the mining process. Primary disease prevention therefore aims at efforts that minimize or eliminate completely the exposure to dust in coal mining. Exposure to dust during coal mining does not only lead to pneumoconiosis, but could also cause other illnesses such as bronchitis. This review identified key measures being taken to control dust exposure as an effective health care measure in coal mining. The identified measures included laws and regulations, health survey and assessment, direct exposure control through appropriate technological applications, research and development and instituting risk management systems.

3.2. Enactment of laws and regulations
Enactment of laws and regulations has been a widely used means of ensuring miners safety. With regard to dust control, these regulations ensure that mining processes are structured to minimize dust emissions, institute procedures to detect health risks at the early stages as well as equip the miners to operate safely. This review found that most countries have instituted Mine Acts as a form of regulatory tool for mining operations. In the United States of America, the “Mine Act of 1977” gives authority to the Mine Safety and Health Administration[25] to write standards, inspect mines and impose sanctions in case of non-compliance. Similar acts were identified in South Africa,[26-28] and in Ghana. These Acts ensure miners safety mainly through regulating mining operations, providing technical assistance, ensuring provision of surveillance systems, research and training of miners on health and safety.

Most mining acts entail prescriptions for the mining practice. This includes ventilation requirements, roof support and the required level of dust produced. In the “USA Mine Act” for example, statutory permissible limits are sets for exposure to respirable coalmine dust.[29] The Mine Acts also
make provision for regular monitoring to ensure compliance with these standards. In the United States, the Mining Safety and Health Administration is required to conduct frequent inspections. These include quarterly inspections of underground mines and semi-annual inspection of surface mines. The “Mine Health and Safety Act of South Africa” also stipulate the establishment of regional inspectorate divisions for the purposes of administering the act and ensuring compliance.[27] The administrators of these Acts are to sometimes empower to even shut the mine if they fail to comply.[29] In Ghana for instance, the Inspectorate Division (ID) of the Minerals Commission was established following the 2006 Minerals and Mining Act to enforce the Mining Regulations, 1970.[28] The ID is empowered to review proposed mining projects and, if satisfied with the instituted health and safety measures, issues an operating permit.

In China, the government enacted the “Occupational Safety and Health Regulations in Plant” as far back as 1956.[30] This called for the closure of equipment, which sends out dust, harmful steam and gases, and possible installation of ventilation equipment and dust workers operating under wet conditions. In this regulation, the factories were also mandated to provide dust-proof masks, protective glasses and gas masks for workers who engage in dust and other harmful steams. Chinese State Council also issued the “Prevention and Cure Regulations on Pneumoconiosis in 1987”. [31] As

Figure 1: Flow diagram of the review process, measure to control pneumoconiosis in coal mining (adopted from PRISMA tool)[24]
part of this regulation, there is a call on mining operators to ensure that dust density does not exceed the national sanitary standard. It also empowered workers to refuse operating when dust density exceeds national sanitary standard. The Industrial and Commercial Hygiene Standards sets limits for mine dust concentration and the Safety Regulations in Coal Mine stipulates that all coal mines should take active measures to ensure that mine dust does not exceed these limits.[18] However, there is little evidence of the level of compliance of these Acts, especially in low and middle-income countries. It could be deduced from the rising level pneumoconiosis in many countries globally, that these regulations might not be fully adhered.

The mining regulations in most countries call for a provision for surveillance of CWP. Under these regulations, workers are required to report all injuries to help compute crude rates and to identify near miss incidents. The “Mine Health and Safety Act” of USA states that safety managers should establish systems of medical surveillance and keep records hazardous work and medical surveillance. Operators are required to make provision of chest x-rays for underground miners when first employed and during regular intervals. It further states that these x-rays facilities should be certified by the National Institute for Occupational Safety and Health (NOISH). This was for the purpose of monitoring progress of CWP and offering miners with positive films the opportunity to be transferred to a less dusty job.

Training and employee empowerment is another key aspect of most Mining Acts. Employers are required to equip employees with the requisite knowledge to be able to work safely and avoid risk and exposure to hazardous materials. Training coal mine workers on how to minimize dust exposure for instance, is a major prevention strategy for CWP. The South African Mine Health and Safety for example requires that mine operators ensure that every employee is properly trained to deal with risk pertaining to their health or safety associated with any work they have to perform.

3.3. Public health measures

3.3.1. Surveillance

Surveillance is an effective way of detecting and controlling disease occurrence and spread in the mining industry. It is eminent to ensure regular health surveillance for all workers in the coal mining industry. However, although stipulated in most Mining Acts, there were few identified surveillance programmes being rolled out. In the United States, and x-ray surveillance programme in the coal mining industry was initiated in 1970. Evidence shows marked reduction in the prevalence of CWP since the inception of the programme (drop in prevalence from 28.2% to 3.3% from 1973 to 1999 among workers with over 25 years or more experience).[3]

Health surveillance provides the avenue for unravelling current levels of disease prevalence. CWP is a progressive disease, which could be detected and dealt with earlier if there are proper surveillance and screening mechanisms. The Centre for Disease Control[2] also reported a two-month health screening programme conducted in five mine sites in bituminous coalfields in western Pennsylvania (Altoona, Clearfield, Farmington, Indiana, and Somerset) and, in June 1997, at three mine sites in anthracite coalfields in eastern Pennsylvania (Centralia, Pottsville, and Wilkes-Barre) found a prevalence of 83 (6.7%) of 1236 screened miners and marked differences between eastern and western sites. These surveillance programmes expose the risk levels of CWP among miners and pave way for necessary preventive and curative actions. In Africa, the mining sector is marked by weak surveillance systems. There is scarce evidence of implemented surveillance programmes across mining sectors in Africa, and in areas where efforts have been made, there are few or no policy implementations to this effect.[32]

3.3.2. Exposure control

Efforts to control exposure to dust at mining sites are key to controlling CWP among coal miners. This involves providing appropriate data on the level of dust levels at the mine site and instituting appropriate technological and safety interventions to minimize
Control of CWP in Coal Mines

them. The study by Fishwick et al.\[33\] identified risk assessment and application of principles of good practice as key to minimizing exposure to hazardous substances in the mining industry. The study identified the “hierarchy of control” as mostly used to decide the most appropriate controls. The hierarchy involves elimination (completely removing the agent from the workplace); substitution (replacing harmful agent with an alternative); instituting engineering controls such as total enclosure, partial enclosures with local exhaust ventilation and general ventilation; administrative controls (including segregation of workers, job rotation to minimize potential exposure time, good cleaning and maintenance practices, providing hygiene facilities) and providing personal protective equipment.\[33\]

The study by Joy\[34\] also identified a four-stage process approach to risk management. This includes risk identification (identifying the potential hazard), risk analysis (assessing the magnitude of risk, risk control (deciding on an appropriate measures to reduce or control unacceptable risk) and implementation and control of the measures to ensure effectiveness.

3.3.3. Dust controls measures

Water sprays and ventilating air have been identified as the primary controls used for protecting mineworkers from being over exposed to respirable dust. Water spray is an important primary dust control mechanism among longwall face workers. Although longwall mining has improved over the years, significant increase in coal extraction rates have led to increase in dust production. Longwall mining equipment operates with shearers and all shearer-cutting drums in operation since the late 1970’s have been equipped with drum-mounted water sprays. All shearers in the US are equipped with water sprays and these have shown to be very effective in moving air and entrain dust in the direction of airflow. Current inventions, including spray equipped miners known as “wet head” miners have also been underway in the US and evaluation report shows that these could reduce dust at the mine operator ranging from 0.2 to 0.5 mg/m3.\[35\] Previous evidence suggests the effectiveness of water spray technologies in reducing dust exposure, as a way of preventing PWC. The study by Courtney and Cheng\[36\] reported that a typical water spray operating at 100 psi and 1-2gpm gives no more than 30% airborne capture of respirable dust. Raising the pressure of the sprays was even shown to improve its effectiveness in dust capture. A high-pressure system (2,300 psi, 3gpm) for instance gave 30% respirable dust reduction just as conventional spray (100psi, 19gpm) but with much less water.\[37\]

Ventilation ensures reduction in dust levels by diluting generated dust and transporting dust away before it can migrate to breathing zones. This was described as the most effective method of dust control because it ensures the main work entry and the continuous miner as well as the shuttle car are exposed to fresh air. This involves bringing in fresh air to the face in the working entry and installing tubing within the entry to create an air separation and further drawing dust-laden air from the face through the tubing. Other reported ventilation measures include equipping miners with fan-powered, flooded-bed scrubbers, which mainly collect dust by mining with water droplets and removing them from airstream when the droplets are captured by a demister. In the United States, miners are also equipped with external sprays located on top of the miner booms, with the purpose of wetting the coal as its being cut and prevent dust from being airborne. These measures are help to minimize the respirable air to the mineworker and help prevent CWP.

Dust avoidance is another effective way to control dust exposure. This refers to the movement of either the dust cloud or the workers so they are upwind of the dust. One effective means on avoiding dust on mining machinery is the use of remote control. Evidence shows that this control measure enable shearer operators to move upwind 15-20ft, and reducing dust exposure by 68% by avoiding direct contact with dust from the head gate-end shearer.\[38\] In another study by Divers et al.,\[39\] this measure enabled the operator to step back 12ft from intake and reduce dust exposure level by 50%.

3.3.4. Compensation

Mine workers’ compensation is a very important issue related to the control of health issues such
as CWP. Mining Acts emphasize on the need for operators to institute appropriate compensatory schemes for mine workers in the advent of disease, disabilities or death due to their involvement in mining activities. In South Africa for instance, there is statutory provision for compensation under two pieces of legislation; the “Compensation of Occupational Injuries and Diseases Act” (Coida) and the “Occupational Diseases in Mines and Works Act” (Odimwa), with the Odimwa being specifically applicable to the mining industry.

In the United Kingdom, there exist the Coal Health Claims, which are two claims run by the Government and are created to compensate UK coal miners and their families in relation to respiratory diseases. Previous evidence suggests that most mineworkers especially from low-income countries do not benefit from compensations in times of injuries or disabilities. A study by Roberts among 205 former miners, Eastern Cape, South Africa reported that about 85% of respondents did not receive the statutory medical compensation when leaving the mine and about 99% were not aware of the existence of the Compensation Acts and its benefits. Another study by on 304 former gold miners living in Thamanga, Botswana also reported that only few of eligible miners had been compensated and in the study by Trapido et al. on former gold miners living in Eastern Cape, South Africa only 2.5% had been fully compensated with 62% of those eligible not compensated.

In China, the government included asbestos pneumoconiosis in the list of legal occupational diseases under “Law on Prevention and Care of Occupational Disease enacted in 2001”. Under this law, pneumoconiosis patients could receive free medical treatment catered for by the insurance fund of the occupational injury. In the same vein, the Insurance Regulations of the Occupational Injury issues in 2003 by the State Council also highlights various treatment rights and interests due the occupational disease patients.

4. Discussion

The pneumoconiosis is a major occupational health burden globally resulting in about 260,000 deaths in 2013. This review was conducted to explore healthcare measures aimed at preventing CWP and asbestosis mainly resulting from exposure to dust at the mine. Laws and regulations were by far the most identified control measure for occupational injury and improve health of workers. It provides an avenue for setting up regulatory bodies and empowers them to monitor, evaluate and ensures that coal mining operators work within set up regulatory standards to ensure hygienic working environment. Some mining acts stipulate the requisite operating requirements for setting up mines and ensure these are in place before operation begins and provide avenues for training of staff on appropriate health and hygienic measures. In the industrialized world, adherence to mining regulations has reduced inhalation exposure in the past decade. The passage of the Mine Act in the United States for instance, led to marked reduction in fatal injuries at the coalmine. On the other hand, there is little evidence of miners’ cooperation and enforcement of mining regulations by appropriate authorities. Most mine regulations also do not set limit for inhalable dust concentration. Recent review of dust control practices in China and Australia identified that Chinese regulations have no limit in inhalable dust concentration whereas in Australian regulations, the concentration is limited to 10 mg/m³. Regulatory bodies mandated under these acts should ensure thorough enforcement of these regulations, which could help improve the hygienic standards of coalmines.

This review also identified practical measures including improved technologies targeted at reducing respirable air at the coalmine. Exposure control measures that eliminate or substitute harmful agents and other control measures are enforced in most industrialized settings. Wetting and ventilation technologies are available in most industrialized settings and these are effective in reducing exposure to dust. In China, application of water infusion before mining operations has shown to reduce dust up to about 60%. This technology has also been successfully applied in Australia since 1987. In the United States, miners are equipped with fan-powered, flooded-bed scrubbers, and these are helpful in collecting exposable dust during mining.
Control of CWP in Coal Mines

5. Limitations

The strength of this review reflects the various themes identified and their consistency with previous studies. Although we tried to search for all appropriate studies, we might have missed some and that may affect the generalization of our findings. However, we believe that the results identified are compelling and shows consistent pattern scarcity of findings and inadequate public health measures to ensure mine safety, especially in limited resource settings.

6. Conclusion and Implications for Translation

In conclusion, this review shows varied efforts to control respirable dust in coal mining. Many technological interventions are currently available to promote primary prevention of CWP by ensuring reduction in inhalable dust. These however could be better implemented through enforcement of mining regulations. Health and environmental surveillance systems, which are stipulated in most mining regulations, are important in unravelling levels of exposure and infections among coal workers. There is however scarcity of evidence to this effect, especially in low-income countries. Public strategy that combines various health measures including training of workers on safety measures will be much effective in preventing CWP. More research is required on the effectiveness of public health interventions and safety measures in mining to improve the level of evidence and make room for improvement.

Compliances with Ethical Standards

Ethical Statement: This study is a review of existing literature and did not require ethical approval. Acknowledgement: This study was partially supported by the National Natural Science Foundation of China (81573119). The authors express a profound gratitude to all who helped in making this review possible especially Daniel Boateng. Also thank the authors of all the works cited in this study.

References

28. UN Department of Economic and Social Affairs. A Report on Ghana’s mining sector for the 18th session of the UN Commission on sustainable development” UN Department of Economic and Social Affairs 2010.

31. The Central People’s Government of the people’s
Control of CWP in Coal Mines

